12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- /*
- Copyright (c) 2011 Andrei Mackenzie
- Permission is hereby granted, free of charge, to any person obtaining a copy of
- this software and associated documentation files (the "Software"), to deal in
- the Software without restriction, including without limitation the rights to
- use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
- the Software, and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
- The above copyright notice and this permission notice shall be included in all
- copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
- FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
- COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
- IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
- // levenshtein distance algorithm, pulled from Andrei Mackenzie's MIT licensed.
- // gist, which can be found here: https://gist.github.com/andrei-m/982927
- 'use strict'
- // Compute the edit distance between the two given strings
- module.exports = function levenshtein (a, b) {
- if (a.length === 0) return b.length
- if (b.length === 0) return a.length
- const matrix = []
- // increment along the first column of each row
- let i
- for (i = 0; i <= b.length; i++) {
- matrix[i] = [i]
- }
- // increment each column in the first row
- let j
- for (j = 0; j <= a.length; j++) {
- matrix[0][j] = j
- }
- // Fill in the rest of the matrix
- for (i = 1; i <= b.length; i++) {
- for (j = 1; j <= a.length; j++) {
- if (b.charAt(i - 1) === a.charAt(j - 1)) {
- matrix[i][j] = matrix[i - 1][j - 1]
- } else {
- matrix[i][j] = Math.min(matrix[i - 1][j - 1] + 1, // substitution
- Math.min(matrix[i][j - 1] + 1, // insertion
- matrix[i - 1][j] + 1)) // deletion
- }
- }
- }
- return matrix[b.length][a.length]
- }
|